Books on Combinatorics
Introduction to combinatorics
Martin J. Erickson
John Wiley & Sons, Inc.  1996

This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections--Existence, Enumeration, and Construction--begins with a simply stated first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice.

Introduction to Combinatorics
Alan Slomson
Chapman & Hall/CRC  February 1, 1997

The growth in digital devices, which require discrete formulation of problems, has revitalized the role of combinatorics, making it indispensable to computer science. Furthermore, the challenges of new technologies have led to its use in industrial processes, communications systems, electrical networks, organic chemical identification, coding theory, economics, and more. With a unique approach, Introduction to Combinatorics builds a foundation for problem-solving in any of these fields. Although combinatorics deals with finite collections of discrete objects, and as such differs from continuous mathematics, the two areas do interact. The author, therefore, does not hesitate to use methods drawn from continuous mathematics, and in fact shows readers the relevance of abstract, pure mathematics to real-world problems. The author has structured his chapters around concrete problems, and as he illustrates the solutions, the underlying theory emerges. His focus is on counting problems, beginning with the very straightforward and ending with the complicated problem of counting the number of different graphs with a given number of vertices.Its clear, accessible style and detailed solutions to many of the exercises, from routine to challenging, provided at the end of the book make Introduction to Combinatorics ideal for self-study as well as for structured coursework.

Intuitive Combinatorial Topology
V.G. Boltyanskii, V.A. Efremovich, J. Stillwell and A. Shenitzer
Springer  March 30, 2001

Topology is a relatively young and very important branch of mathematics. It studies properties of objects that are preserved by deformations, twistings, and stretchings, but not tearing. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. There is hardly an area of mathematics that does not make use of topological results and concepts. The importance of topological methods for different areas of physics is also beyond doubt. They are used in field theory and general relativity, in the physics of low temperatures, and in modern quantum theory. The book is well suited not only as preparation for students who plan to take a course in algebraic topology but also for advanced undergraduates or beginning graduates interested in finding out what topology is all about. The book has more than 200 problems, many examples, and over 200 illustrations.

Lectures in Geometric Combinatorics‎
Rekha R. Thomas
AMS Bookstore  July 2006

This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.

Lectures on Representation Theory
Jing-Song Huang
World Scientific Publishing Company  March 2000

This book is an expanded version of the lectures given at the Nankai Mathematical Summer School in 1997. It provides an introduction to Lie groups, Lie algebras and their representations as well as introduces some directions of current research for graduate students who have little specialized knowledge in representation theory. It only assumes that the reader has a good knowledge of linear algebra and some basic knowledge of abstract algebra.

Lie Algebras and Algebraic Groups
Patrice Tauvel,Rupert W. T. Yu
Springer  December 15, 2010

Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.

Mathematical Biology
J.D. Murray
Springer  January 27, 2003

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology.

Mathematical Essays in Honor of Gian-Carlo Rota
Gian-Carlo Rota; Bruce Eli Sagan; Richard P Stanley
Boston : Birkhäuser Boston  1998

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
This site is maintained by Bill Chen. If you have any suggestions or anything to contribute, please contact me at
津教备0272号 津ICP备06011496号